Fibonacci numbers (bc)
From LiteratePrograms
- Other implementations: ALGOL 68 | Alice ML | bc | C | C Plus Plus templates | dc | E | Eiffel | Erlang | Forth | FORTRAN | Haskell | Hume | Icon | Java | JavaScript | Lisp | Logo | Lua | Mercury | OCaml | occam | Oz | Pascal | PIR | PostScript | Python | Ruby | Scala | Scheme | Sed | sh | sh, iterative | Smalltalk | T-SQL | Visual Basic .NET
The Fibonacci numbers are the integer sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, ..., in which each item is formed by adding the previous two. The sequence can be defined recursively by
- 1 \\ \end{cases} ."/>
Fibonacci number programs that implement this definition directly are often used as introductory examples of recursion. However, many other algorithms for calculating (or making use of) Fibonacci numbers also exist.
The fibonacci numbers in bc:
<<fib.bc>>= fib main
Implementation
This is a recursive implementation.
<<fib>>= define fib (n) { if(n<2) return n; return (fib(n-1)+fib(n-2)); }
Test driver
<<main>>= for (i=0; i<30; ++i) { fib(i); }
Download code |